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Abstract

This study addresses a new fictitious domain method for elliptic problems in order to handle general and possibly mixed
embedded boundary conditions (E.B.C.): Robin, Neumann and Dirichlet conditions on an immersed interface. The main
interest of this fictitious domain method is to use simple structured meshes, possibly uniform Cartesian nested grids, which
do not generally fit the interface but define an approximate one. A cell-centered finite volume scheme with a non-conform-
ing structured mesh is derived to solve the set of equations with additional algebraic transmission conditions linking both
flux and solution jumps through the immersed approximate interface. Hence, a local correction is devised to take account
of the relative surface ratios in each control volume for the Robin or Neumann boundary condition. Then, the numerical
scheme conserves the first-order accuracy with respect to the mesh step. This opens the way to combine the E.B.C. method
with a multilevel mesh refinement solver to increase the precision in the vicinity of the interface. Such a fictitious domain
method is very efficient: the L2- and L1-norm errors vary like Oðhl�Þ where hl� is the grid step of the finest refinement level
around the interface until the residual first-order discretization error of the non-refined zone is reached.

The numerical results reported here for convection–diffusion problems with Dirichlet, Robin and mixed (Dirichlet and
Robin) boundary conditions confirm the expected accuracy as well as the performances of the present method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

This paper is devoted to the numerical validation of a new fictitious domain method for general embedded
boundary conditions (E.B.C.) associated with a multilevel local mesh refinement. To compute the solution ~u of
a given problem ð ~PÞ in a domain eX, a fictitious domain methodology [1,2] generally consists in several steps:
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(i) The domain eX is embedded inside an auxiliary fictitious domain X, generally larger and simpler such that
X ¼ eX [ R [ Xe, where Xe stands for an external domain and R the common interface between the two
sub-domains. The domain X is chosen simply shaped, geometrically simpler than eX, see Fig. 1.

(ii) A fictitious problem ðPÞ is designed and solved all over the fictitious domain X, with appropriate trans-
mission conditions on R and data in Xe in order to handle the original boundary conditions of ð ~PÞ on the
immersed interface R. The restriction of the problem ðPÞ over the domain eX is then chosen of the same
type as ð ~PÞ.

(iii) The solution ~u of the original problem ð ~PÞ is finally found as: ~u ¼ uj~X, the restriction of the fictitious
solution u of ðPÞ over eX, or at least uj~X � ~u.

The objective is to use a simple structured mesh in X, e.g. a uniform Cartesian grid, independent of the shape
of the immersed interface R. This significantly simplifies and reduces the cost of the mesh generation in com-
parison to the use of boundary conforming structured or even unstructured meshes, specially in 3-D or for a
moving interface R. The efficient mesh generation for the latter situations remains actually an extremely chal-
lenging problem. Moreover, the solution process of the fictitious problem ðPÞ with such a regular structured
grid on X can be carried out with a fast solver.

In this work, the fictitious domain method uses a recent fracture model proposed in [3], which links both
flux and solution jumps on an immersed interface R. The fictitious domain formulation for general E.B.C. is
analyzed in [4]. The addressed problems are general second-order elliptic problems or associated parabolic
ones in eX with usual boundary conditions on R: Dirichlet, Neumann or Fourier–Robin. An interesting feature
of our approach is to allow the treatment of mixed immersed boundary conditions on R, i.e. the immersed
interface R may be the union of some parts, each of them supporting a different boundary condition. More-
over, the embedding configurations can be very general (see Fig. 1). In particular, the original domain does not
need to be totally immersed inside the fictitious domain.

In practical computations, the immersed interface R (which is not generally aligned with the grid lines) is
roughly approximated by some Rh lying on sides of control volumes. For example, with a uniform Cartesian
grid of mesh step h, Rh is a set of stair steps, see Fig. 9. This defines an approximation eXh of the original
domain eX such that we may have jmeasðeXhÞ �measðeXÞj ¼ OðhÞ. This method is fast and has all the advan-
tages of using a regular structured grid; however, the expected accuracy is only of first order in the L2-norm.
An adaptive local mesh refinement in the vicinity of the immersed interface R is then required to increase the
precision of the solution. A multigrid [5] process enables the solutions of each level to be each others con-
nected. A FIC-like solver [6,7] is implemented by using a sequence of local nested grids having finer and finer
sizes, the solution at each level being corrected by a flux residual calculated with the next finer level. The
expected accuracy now varies asymptotically like Oðhl� Þ, where hl� is the mesh step of the finest local grids
around R (last level of refinement), until the residual first-order discretization error of the non-refined zone
is reached. Such a fictitious domain method combined with an adaptive multilevel local mesh refinement solver
proves to work efficiently and it yields a significant improvement in the ratio of the obtained precision over the
resulting cost or CPU (central processing unit) time, see also [8,7] and the references therein.

A lot of papers have been now dedicated to embedded Dirichlet boundary conditions with several
approaches, e.g. [9–13,8,14,15] and the references therein, among the methods which deal with a ‘‘sharp inter-
face’’. However, only few studies are devoted to other embedded boundary conditions like Neumann [16–20]
or especially Robin (or Fourier) ones [21,22,12,23,24]. Moreover, the present method does not require the use
of Lagrange multipliers and hence the solution of a saddle-point problem involving the inf-sup condition to be
satisfied by the discrete spaces [11,25,26]. Compared to the Grid Embedded Method (e.g. [27,14,28,20]), the
main advantage of our fictitious model is to conserve the same local stencil of discretization to evaluate the
numerical fluxes, even near the immersed interface. As in the Immersed Interface Method (see [29] for an over-
view), appropriate coefficients are introduced in the scheme to take into account the immersed jumps. More-
over, the algebraic transmission conditions used in the present method for the immersed jumps are more
general than for the IIM where the jumps are supposed to be given, and no additional unknown is introduced
near the immersed interface. Let us mention that some fictitious domain methods use a ‘‘diffuse interface’’
approach to handle immersed boundary conditions, e.g. [30–32] and the references therein. To the best of
our knowledge, only [33,32] focus on Robin boundary conditions. An interesting feature of the approach
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described in [32] is to combine such a fictitious domain method with multilevel local mesh refinement, while
the fictitious boundary method presented in [34,35] deals with multigrid iterative filtering and special grid
deformation techniques.

The structure of this paper is as follows. In Section 2, we recall the fictitious domain model with immersed
jumps for an elliptic problem and we detail how to impose each kind of general E.B.C. Section 3 will be ded-
icated to the finite volume scheme devoted to compute this fictitious domain method. Then, in Section 4, an
adapted refinement algorithm based on a multilevel flux restriction is introduced to increase the precision of
the solution. Finally, in Section 5 some numerical results focused either on diffusion or on convection–diffu-
sion problems illustrate the performance of the method.
2. Fictitious domain method with immersed jumps

Our objective is to solve, with a fictitious domain method, the following problem originally defined in a
bounded domain ~X � Rd with either a Dirichlet, a Neumann or a Robin boundary condition (or mixed)
on oeX ¼ oeXD [ oeXR: For ~a 2 L1ðeXÞd�d

;~v 2 L1ðeXÞd ; ~b 2 L1ðeXÞ and ~f 2 L2ðeXÞ, find ~u 2 H 1ðeXÞ such that
ð ~PÞ
divð�~a$~uþ ~v~uÞ þ ~b~u ¼ ~f in eX; ðaÞ
~u ¼ uD on oeXD; ðbÞ
�ð~a$~uÞ � n ¼ aR~uþ gR on o~XR; ðcÞ

8><>: ð1Þ
where n is the outward unit normal vector on oeXR, uD 2 H 1=2ðoeXDÞ, 0 6 aR 2 L1ðoeXRÞ and gR 2 L2ðo~XRÞ.
The tensor of diffusion ~a � ð~aijÞ16i;j6d and the reaction coefficient ~b verify the classical ellipticity

assumptions:
9a0 > 0; 8n 2 Rd ; ~aðxÞn � n P a0jnj2 a:e: in eX; ðA1Þ

where j � j is the Euclidean norm in Rd ,
9b0 P 0; ~bðxÞP b0 a:e: in eX: ðA2Þ

In a fictitious domain approach, the original domain eX is embedded inside an open bounded polygonal
domain X � Rd such that X ¼ eX [ R [ Xe, where Xe is the external fictitious domain and R the common inter-
face between eX and Xe (see Figs. 1 and 8). This interface R � Rd�1 is called immersed interface. The fictitious
domain X is chosen to be geometrically simple (rectangular for example in 2-D). The boundary of eX is defined
by oeX ¼ eC [ R, and the boundary of X by oX ¼ eC [ Ce (see Fig. 1).

Let us first notice that writing the Robin boundary condition (1c) on R in a fictitious domain method with
X 	 eX is not directly possible unless accepting flux or solution jumps on R or both. This problem is thus
‘‘extended’’ in the following manner to the whole fictitious domain X by using the formulation for general
embedded boundary conditions introduced in [4].

2.1. Model with embedded jump transmission conditions on R

Let n be either the outward unit normal vector on Ce, or the unit normal vector on R oriented from ~X to Xe.
For a function w in H 1ðeX [ XeÞ, let w�R and wþR be the traces of wj~X and wjXe

on each side of R respectively,
wjR ¼ ðw

þ
R þ w�R Þ=2 the arithmetic mean of traces of w, and swtR ¼ ðw

þ
R � w�R Þ the jump of traces of w on R

oriented by n.
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Fig. 1. Embedding the original domain eX inside a fictitious rectangular domain X.
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For the data f 2 L2ðXÞ, g and q given in L2ðRÞ, we consider the second-order elliptic problem for the real-
valued function u defined in X and including immersed transmission conditions on R which assume jumps of
both the normal diffusive flux uðuÞ � n � �ðaruÞ � n and the traces of the solution u through the interface R:
ðPÞ

divð�a$uþ vuÞ þ bu ¼ f in X; ðaÞ
original B:C: on eC; ðbÞ
suitable B:C: on Ce; ðcÞ
sða$uÞ � ntR ¼ aujR � q on R; ðdÞ
ða$uÞ � njR ¼ bsutR � g on R; ðeÞ

8>>>>>><>>>>>>:
ð2Þ
where the uniformly positive definite tensor of diffusion a � ðaijÞ16i;j6d , the reaction coefficient b P 0, and the
transfer coefficients a; b P 0 on R are measurable and bounded functions verifying classical ellipticity assump-
tions. Moreover, we choose
ajeX ¼ ea; vjeX ¼ ev; bjeX ¼ ~b; f jeX ¼ ~f
in order to recover the original problem (1) in eX. The B.C. (2c) on Ce is chosen to ensure the solvability of the
above fictitious domain model. This problem is proved to be well-posed in [3,4] and the solution u belongs to
H 1ðeX [ XeÞ. When a = g = q = 0 and b!1, the perfect transmission problem is recovered with u 2 H 1ðXÞ,
see Theorem 3.2 in [12].

The data a, v, b, f in Xe and a, b, g, q on R will be defined further in order to get uj~X ¼ ~u or at least ugj~X � ~u
when the model is penalized with a penalty parameter g! 0.

2.2. Treatment of the original E.B.C. on R

2.2.1. Embedded Robin or Neumann boundary conditions

Let u�R � �ða$uÞ�:njR and uþR � �ða$uÞþ:njR be the traces of the diffusive normal flux on each side of R
respectively. The algebraic transmission conditions (2d), (2e) write
u�R � uþR ¼
a
2
ðuþR þ u�R Þ � q; ð3Þ

� 1

2
ðuþR þ u�R Þ ¼ bðuþR � u�R Þ � g: ð4Þ
The four unknown quantities u�R , uþR ; u
�
R and uþR on R are then linked with the algebraic transmission condi-

tions (3), (4). Hence, by eliminating one of the two exterior quantities, either uþR or uþR ;u
�
R can be written in the

two following equivalent ways, respectively:
u�R ¼ bþ a
4

� �
u�R � b� a

4

� �
uþR þ g � q

2
on R; ð5Þ

u�R ¼
1

bþ a
4

� � abu�R þ b� a
4

� �
uþR þ

a
2

g � bq
h i

on R: ð6Þ
Note that Eq. (6) is a priori defined if a and b are different from 0.
The particular choice b ¼ a=4 requires no exterior control since both Eqs. (5) and (6) yield the same Robin

boundary condition below, independently of uþR or uþR :
u�R � �ða$uÞ� � njR ¼
a
2

u�R þ g � q
2

on R: ð7Þ
When the Robin boundary condition in (1c) is desired for the original problem (1) in eX, the following im-
mersed boundary condition on R must be satisfied by the solution of the fictitious domain problem in X:
u�R � �ða$uÞ� � njR ¼ aRu�R þ gR on R: ð8Þ

This gives the sufficient conditions for the data such that Eq. (7) satisfies (8), see (R) in Table 1. The Neumann
boundary condition is obtained as the particular Robin case where aR ¼ 0.



Table 1
Parameters in Xe and on R for the E.B.C. method with immersed jumps

E.B.C. method Parameters in Xe Parameters on R

Robin (R) ajXe
¼ Id; vjXe

¼ 0 a ¼ 4b ¼ 2aR

No exterior control bjXe
¼ f jXe

¼ 0 g � q
2 ¼ gR

Dirichlet (D1) ajXe
¼ Id; vjXe

¼ 0 a ¼ 4b ¼ 2
g

Surface penalty bjXe
¼ f jXe

¼ 0 q
2� g ¼ 1

g uD

Dirichlet (D2) ajXe
¼ Id L2 penalty;

1
g Id H1 penalty;

�
vjXe
¼ 0 b ¼ 1

g

Volume penalty bjXe
¼ 1

g ; f jXe
¼ 1

g ue a ¼ q ¼ g ¼ 0

I. Ramière et al. / Journal of Computational Physics 225 (2007) 1347–1387 1351
This Robin or Neumann E.B.C. method is proved to be consistent, i.e. uj~X ¼ ~u, in [4]. Other variants are
proposed there which require either uþR or uþR to be ‘‘controlled’’ by L2 or H1 volume penalty methods
[12,13,36] performed with the parameters a, b and f in Xe.

2.2.2. Embedded Dirichlet boundary condition

Let 0 < g
 1 be a real penalty parameter (called penalty coefficient) which is likely to tend to zero. When
the Dirichlet condition u�R ¼ uD is to be handled, the Robin condition in Eq. (1) or (8) can be penalized by a
surface penalty on R with aR ¼ 1

g ðaR ! þ1 as g! 0Þ and gR ¼ � 1
g uD. The previous Robin E.B.C. method

can be then penalized as in (D1) in Table 1. Hence for g = 0 and b! þ1, the (D1) E.B.C method yields
no solution jump sugtR ! 0 independently on a. Thus, we can use for example the parameters: a ¼ b ¼ 1

g,
q ¼ 1

g uD and g = 0.
Another type of method consists in using a L2 or H1 volume penalty in the exterior domain Xe such that

limg!0uþgR ¼ uD for the model with b ¼ 1
g!1, g = 0 and thus sugtR ! 0 as g! 0, as proposed in [12]. In that

case, we consider an extension ue 2 H 1ðXeÞ of uD over Xe such that the trace c0ðueÞ � uejR ¼ uD, see (D2) in
Table 1.

The convergence of these methods is proved in [4] and for usual weak regularity assumptions the following
error estimate: kugj~X � ~uk

H1ðeXÞ ¼ Oð ffiffiffigp Þ is at least reached. Better estimates are possible with stronger regularity.

Since the immersed boundary conditions are treated within the same unified formulation with appropriate
data (see Table 1), it is straightforward to deal with mixed embedded boundary conditions on the immersed
interface R. An example is given in Section 5.4.

3. Finite volume (FV) discretization

3.1. Notations

The polygonal domain X is meshed with a family Th ¼ fKg of disjointed finite volumes K � X (called ‘‘con-

trol volumes’’) which are open convex polygons such that X ¼ [K2Th K with usual assumptions, e.g. [37]. The
mesh size is defined by h ¼ supfdiamðKÞ;K 2Thg.

Let E be the family of sides (also called edges in 2-D) of the control volumes. For any ðK; LÞ 2T2
h with

K 6¼ L, either the (d�1)-dimensional Lebesgue measure of K \ L is 0 or K \ L ¼ r for some r 2 E, which will
then be denoted by r � KjL. The set of neighbors of K is denoted by NðKÞ, that is NðKÞ ¼
fL 2Th; 9r 2 E; r ¼ K \ Lg. For each K 2Th, let EK be the subset of E such that oK ¼ K n K ¼ [r2EK �r.
Furthermore, E ¼ [K2ThEK . The set of interior (resp. boundary) sides is denoting by Eint (resp. Eext), that is
Eint ¼ fr 2 E; r 6� oXg (resp. Eext ¼ fr 2 E; r � oXg). One of the most interest of the E.B.C. method is to
use a simple non-conforming and structured mesh. Therefore, the sides of the mesh Th do not generally match
the immersed interface R (e.g. with a uniform Cartesian mesh like in Section 5). An approximate interface Rh is
thus defined by the mesh (see Section 5). This interface separates the approximate original domain eXh from the
approximate external domain Xe;h. Let ER ¼ fr 2 E; r � Rhg be the set of sides lying on Rh. For each K 2Th,
a ‘‘cell-centered’’ discretization point xK 2 K is chosen such that for each r 2 EK ; r ¼ KjL, the segment ½xK ; xL�
is orthogonal to r at the point xr 2 r. For each K 2Th, let dK;r ¼ jxK � xrj > 0 be the distance from xK to r



1352 I. Ramière et al. / Journal of Computational Physics 225 (2007) 1347–1387
and nK;r be the unit outward normal vector on r. For r ¼ KjL, we then denote by dr the Euclidean distance
between xK and xL, hence we have dr ¼ dK;r þ dL;r.

For each K 2Th or r 2 E, mðKÞ ¼
R

K dx and mðrÞ ¼
R

r ds denote the measure of K or r. For a given quan-
tity w, the discrete values wK and wr are defined by the mean values of w over K or r, respectively:
wK ¼
1

mðKÞ

Z
K

wðxÞdx and wr ¼
1

mðrÞ

Z
r

wðsÞds:
3.2. A numerical scheme for the immersed jumps model

For sake of simplicity, the numerical scheme is now written for an isotropic diffusion tensor a ¼ aðxÞId. For
each K 2Th the main discrete unknown denoted by uK is an approximation of the value u(xK) of the exact
solution u at the nodal point xK of the mesh. Two auxiliary unknowns ðuK;r; uL;rÞ are introduced on
r ¼ KjL 2 Eint which are approximations of respectively uðxrÞjK and uðxrÞjL.

The cell-centered FV numerical scheme uses the scheme proposed in [3] for diffusion-reaction problems.
The numerical convective flux is obtained with a monotone upwind scheme. This scheme is of first order which
is in agreement with the expected accuracy of our method. This FV scheme allows jumps of diffusive and con-
vective fluxes as well as jumps of the solution on each side r 2 Eint and it reads in the following synthetic form:
X

r2EK

mðrÞðF K;r þ vK;ruUp
K;rÞ þ mðKÞbKuK ¼ mðKÞfK 8K 2Th ð9Þ
where the numerical diffusive flux F K;r reads for all K 2Th:
F K;r ¼

�aK
uK;r � uK

dK;r
if r ¼ KjL 2 Eint;

�aK
ur � uK

dK;r
if r 2 Eext with a Dirichlet B:C: on r : u ¼ gD;

aK
aK þ jrdK;r

ðjruK þ /rÞ if r 2 Eext with a Robin B:C: on r : �ða � $uÞ � n ¼ juþ /;

8>>>><>>>>: ð10Þ
and the numerical convective flux V K;r ¼ vK;ruUp
K;r is obtained with an upstream scheme by
vK;r ¼
1

mðrÞ

Z
r

v�K;r � nK;r ds
and 8

uUp

K;r ¼

uK if vK;r P 0;

ur if vK;r < 0 and r 2 Eext;

uK;r if vK;r < 0 and r 2 ER \ Eint;

uL if vK;r < 0 and r 62 ðER [ EextÞ:

>>><>>>:

The key point of this scheme is to use transmissions conditions on all r 2 Eint in order to have the same generic
numerical scheme for all the mesh. Thus the discretization of Eqs. (2d), (2e) for all r ¼ KjL 2 Eint yields
respectively:
F K;r þ F L;r ¼ ar
uK;r þ uL;r

2
� qr; ð11Þ

1

2
ðF L;r � F K;rÞ ¼ brðuL;r � uK;rÞ � n:nK;rgr; ð12Þ
where n now stands for the unit normal on Rh.
Hence, for all r ¼ KjL 2 Eint, Eqs. (10)–(12) enable the interface unknown uK;r to be expressed with respect

to the main discrete unknowns ðuKÞK2Th
:

uK;r ¼
ârdL;r

aLdr
1þ ar

4br

� �
uK þ

ârdK;r

aKdr
1� ar

4br

� �
uL þ

âr

drbr

uK þ
ârdK;rqr

aKdr

dL;r

aL
þ 1

2br

� �
� n � nK;r

ârdK;rgr

aKdrbr

1þ ardL;r

2aL

� �
; ð13Þ
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where
âr ¼
ar

1þ ar
brdr
þ arð 1

4br
þ krÞ

; ar ¼
draKaL

dL;raK þ dK;raL
; kr ¼

dK;rdL;r

dL;raK þ dK;raL
:

Therefore, the interface unknowns uK;r; uL;r can also be eliminated in the diffusive flux expression as reported
in [3] and we have
F K;r ¼ �âr
uL � uK

dr

� �
þ arâr

2brdr

uK þ uL

2

� �
þ arârdL;r

aLdr
uK �

ârqr

dr

dL;r

aL
þ 1

2br

� �
þ n:nK;r

ârgr

drbr

1þ ardL;r

2aL

� �
:

ð14Þ

The cell-centered FV scheme (9) then requires the standard (2d + 1)-points stencil only. This numerical

scheme is as cheap as the standard scheme without any jump. The convergence properties of the present
scheme are also presented in [3].

On the sides r 2 Eint; r 62 ER, we set the discrete transfer coefficients of Eqs. (11), (12) in order to respect the
local conservativity and the solution continuity properties:
F K;r ¼ �F L;r; and uK;r ¼ uL;r if r ¼ KjL 2 Eint n ER: ð15Þ

Hence,
ar ¼ qr ¼ gr ¼ 0 and br ¼
1

g
!1 8r 2 Eint n ER:
Otherwise, 8r 2 ER \ Eint, the discrete transfer coefficients are equal to the mean value on r of the transfer
coefficients of the fictitious problem ðPÞ lying on Rh (see Table 1).

Remark 1. 8r 2 Eint; r 62 ER, the local conservativity of the convective flux is also ensured
V K;r ¼ �V L;r:
Remark 2. In the following numerical results, a Cartesian mesh is used. In this case, if the diffusion tensor is
diagonal, the above FV scheme can be applied in each mesh direction. The non-trivial anisotropic case
requires some important modifications of the FV scheme, which are beyond the scope of this paper.
3.3. Geometric correction for a Robin E.B.C

When the interface R is roughly approximated by the mesh into Rh, a surface correction is then
required for a Robin (or a non-homogeneous Neumann) embedded boundary condition. Let xh;R ¼
f[K;K 2Th;K \ R 6¼ ;g be the union of the finite volumes crossed by R. Around each finite volume
K � xh;R, the local conservativity between the embedded flux integral and the approximate flux integral
is ensured by
Z

R\bK u�R ds ¼
Z

Rh\bK 1

�K
u�Rh

ds; ð16Þ
where u�Rh
¼ aRu�Rh

þ gR, K̂ is a union of control volumes around K precised below and �K is the local correc-
tion parameter to determine.

For all K � xh;R, we denote by ÊK ¼ fr 2 E; r 2 EK \ ER; r 2 Eext or r ¼ KjL with either L � Xe;h or
L 6�xh;Rg the set of sides lying on Rh associated to K. Otherwise, for K 6�xh;R; bEK ¼ ;.

Hence, for all r � Rh, r 2 ÊK the discrete value u�Rh
of u�R and thus the discrete data aR and gR on R are

divided by the characteristic parameter �K.
Let us now detail the calculation of �K. This correction takes account of the relative surfaces considered in

each cell K � xh;R. For sake of simplicity, a piecewise linear approximation Rl (see Fig. 2) of R composed by a
segment Rl;K in each control volume K � xh;R is defined.
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Fig. 2. Local parameters in a control volume K � xh;R.
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So, a natural way to evaluate the correction parameter �K in each K � xh;R would be
�K ¼

P
r2bEK

mðrÞ
measðRl;KÞ

ð17Þ

8r � Rh; r 2 bEK ; �r ¼ �K : ð18Þ

However, for some cells K � xh;R, we may have bEK ¼ ;, for example K � xh;R without any r 2 ER (see Fig. 2)
or K � ðxh;R \ Xe;hÞ with r ¼ KjL 2 ER where L � xh;R. For such a cell, since �K ¼ 0, the approximate measure
of the segment Rl;K is never taken into account. Then,
X

r2ER

Z
r

1

�r
¼
X
r2ER

mðrÞ
�r
¼

X
K�xh;R;bEK 6¼;

1

�K

X
r2bEK

mðrÞ ¼
X

K�xh;R;bEK 6¼;

measðRl;KÞ < measðRlÞ � measðRÞ;
and the conservativity of the fluxes will not be ensured.
In order to take account of the entire measure of the immersed interface R, for the cells K � xh;R such thatbEK ¼ ;, the measure of Rl;K is added to the measure of Rl;K 0 of one of the neighbor K 0 2NðKÞ with bEK 0 6¼ ;.

The choice of the neighbor K 0 (called in the sequel ‘‘chosen’’ neighbor) can be made by different ways, for
example arbitrarily among all the neighbors L 2NðKÞ such that bEL 6¼ ;. Another choice is detailed hereafter.
Let us underline that for each K � xh;R such that bEK ¼ ;, the ‘‘chosen’’ neighbor is defined uniquely in order
to take account of the measure of Rl;K only once.

For all K � xh;R such that bEK 6¼ ;, let CðKÞ ¼ fL 2Th; L 2NðKÞ; L � xh;R; bEL ¼ ;;K is the chosen
neighbor of Lg be the set of cells of which K is the ‘‘chosen’’ neighbor. Then, we define R̂l;K such that:
bRl;K ¼ Rl;K þ

X
L2CðKÞ

Rl;L ð19Þ
and we have
bK ¼ K [ ð [
L2CðKÞ

LÞ:
Thus, 8K � xh;R such that bEK 6¼ ;, the local correction parameter �K becomes
�K ¼

P
r2bEK

mðrÞ

measðbRl;KÞ
ð20Þ
and
8r � Rh; r 2 bEK ; �r ¼ �K ð21Þ

In order to determine the ‘‘chosen’’ neighbor, we favour the neighbor cell having the most important intersec-
tion with the original domain eX. To do this, in each K � xh;R with bEK ¼ ;, and for each side
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r ¼ KjL 2 EK \ Eint straddling the original domain eX and the exterior domain Xe, we denote by dKjL the pro-
portion of R lying in the original domain eX (see Fig. 2). Among the neighbors L 2NðKÞ such that bEL 6¼ ;, the
‘‘chosen’’ neighbour K 0 is taken such that dKjK 0 ¼ maxLdKjL.

Remark 1. The local surface ratio �K (see Eq. (20)) is defined within an OðhKÞ error, where hK is the diameter of
the cell K. For example, an approximation of �K when R is a circle, as in the following numerical tests, can be
found in [23].

Remark 2. A global correction can be also considered with a rough estimation of �K by a constant value �h over
the whole interface Rh. In this case, it is the ratio between the surfaces of Rh and R:
�h ¼
measðRhÞ
measðRÞ : ð22Þ
However, this global correction is not accurate enough to ensure the convergence of the fictitious domain algo-
rithm with respect to the mesh step h in the general case (see the numerical results in Section 5).

Remark 3 (Theoretical error estimates). We are interesting in error estimates of the discrete fictitious solution
uh over the approximate original domain eXh. Indeed the aim of our fictitious domain approach is to find an
approximation of the exact solution ~u defined in eX using a simple, possibly uniform, Cartesian mesh. In [38], a
convergence study of the error is carried out for a Q1-finite element method with Cartesian non-boundary fit-
ted meshes for both Dirichlet and Robin boundary conditions. This analysis can be considered as a subprob-
lem of the convergence study of the previous fictitious domain methods. In this case, the immersed boundary
conditions are supposed to be perfectly imposed on the approximate interface or at least the modelling error in
order to impose the immersed boundary conditions is assumed to be negligible compared to the approxima-
tion error of the immersed interface. For a regular mesh, if the exact solution ~u belongs to H 2ðeXÞ, the follow-
ing estimates hold in the approximate domain eXh:
k~u� uhk
H1ðeXhÞ

¼ Oðh1=2Þ;

k~u� uhk
L2ðeXhÞ

¼ OðhÞ:
These estimates only depend on appropriate norms of the original data and the H 2-norm of the exact solution
~u in the original domain eX.

For a cell-centered FV scheme as introduced in the previous section, it is natural to obtain similar error
estimates. The numerical results reported in Section 5 confirm that the error of the discrete solution uh

restricted to eXh is of order h in the L2 norm. Hence, the estimates in the approximate domain eXh seem not
to depend on the regularity of the fictitious problem solution over X. Indeed, the solution of the whole ficti-
tious problem ðPÞ with immersed jumps does not generally belong to H 1ðXÞ (when sutR 6¼ 0), but the conver-
gence remains of first order for the L2-norm. For the Lagrange multiplier approach, in [39] the same

conclusion is drawn looking to the numerical interior error (see page 501: in the interior of eX, uh probably
satisfies local error estimates that involve only the values of ~u in eX).

4. Adaptive mesh refinement (AMR) solver

The E.B.C. method proposed in this paper uses a structured (most often Cartesian) uniform mesh. As
explained in the previous section, this mesh defines an approximate interface Rh on which the E.B.C. are
imposed. In order to improve the accuracy of the solution, the present fictitious domain method is combined
with a local multilevel mesh refinement solver in the vicinity of the immersed interface R.

4.1. Multigrid method

A multigrid method [5] is based on a recursive process that consists in generating local subgrids Gl; 0 6 l,
having finer and finer discretization steps hl until reaching a given level l�. The differential problem under
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study is solved on each computational grid. The solutions between each level are connected through the fol-
lowing interactions:

� the boundary conditions on the fine grids Gl; 0 < l 6 l�, are interpolated from the solution to the next coar-
ser grid Gl�1 via a prolongation operator P l�1

l ,
� in the problem solved on the coarse grids Gl; 0 6 l < l�, some corrective terms evaluated from the solution

to the next finer grid Glþ1, are added to the right-hand side by a restriction operator Rlþ1
l .

Iterations of a multigrid process can be represented for example by V-cycles (see Fig. 3).
In our approach, each level of refinement l consists of a set of local patches Gl. Each patch Gl is a nested

subgrid around a single control volume at the next coarser level l � 1.

4.2. FIC method

The principle of the Flux Interface Correction (FIC) [40,41,6,7] method is based on the respect of a flux
weak continuity relation between two grids that are non-concordant. A conservative adjustment between
the nested subgrids is then ensured.

In the sequel, we use the same notations than those introduced in Section 3.1. Moreover the subscript l

refers to the level of refinement under consideration. For 0 6 l < l�, we denote by Al the union of control
volumes at the level l that are included in the refinement area. The restriction operator Rlþ1

l is a flux restriction
operator which takes part into the evaluation of a flux residual on each side of the control volumes Kl �Al.

Let us consider the resolution of the following problem:
ðPÞ
Lu ¼ f in X

B:C: on C ¼ oX:

�

At each iteration k of the FIC algorithm, the following discrete problem is solved on the subdomain Xl asso-
ciated to the grid Gl:
ðPk
l Þ

Lk
l uk

l ¼ f k
l in Xl

B:C: on Cl ¼ oXl:

(

Let us assume that the operator L can be divided into a conservative part (with a divergence term) involving
the flux FðuÞ and a non-conservative part GðuÞ:
Lu ¼ divðFðuÞÞ þ GðuÞ ¼ f :
For each Kl �Al on a coarse level l; 0 6 l < l�, a local flux correction residual rlðFÞ is defined by
rlðFÞðKlÞ ¼
1

measðKlÞ
Rlþ1

l ðFðuÞÞðKlÞ �
X

rl�oKl

Z
rl

FlðuÞ:nKl;rl

( )
; ð23Þ
where Rlþ1
l is the flux restriction operator
Fig. 3. Multigrid process.
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Rlþ1
l ðFðuÞÞðKlÞ ¼

X
frlþ1�oKl;Klþ1�Klg

Z
rlþ1

Flþ1ðuÞ:nKlþ1;rlþ1
: ð24Þ
At each iteration k, a correction term is added to the right-hand side of the equation of the problem ðPk
l Þ:
f 0
l ¼ f jXl

;

f k
l ¼ f k�1

l þ
P

Kl�Al

vKl
rk

l ðFÞðKlÞ;

8<: ð25Þ
where rk
l ðFÞðKlÞ is the flux residual (see Eq. (23)) evaluated at the iteration k for u ¼ uk and v is the charac-

teristic function.

4.3. A FIC-like solver for the E.B.C. method

The FIC method is well adapted to a conservative discretization of the equations on multilevel nested
meshes. As the FV scheme introduced in Section 3 is locally conservative, a FIC solver can be used with
the present E.B.C. method.

4.3.1. Rectangular local patches

At each level l, a set of local nested subgrids Gl with the same grid step hl are obtained from the following
process:

� The original coarse grid G0 corresponds to the mesh Th of the whole domain X. The mesh size h ¼ h0.
� At each level l, 0 6 l 6 l�, the approximate interface Rhl , the approximate original domain eXhl , the approx-

imate external domain Xe;hl as well as xhl;R are detected (see Fig. 4(a)).
� For 0 6 l < l�, each control volume Kl � xhl;R or such that EKl \ ðERÞl 6¼ ; generates a subgrid or patch at

the level lþ 1 with the grid step hlþ1 < hl. The domain of this refinement patch is composed of the ‘‘parent’’
cell Kl enlarged of hlþ1 on all sides (see Fig. 4(b)). By this way, the interpolated B.C. on each subgrid Glþ1

are not directly imposed on the sides of the parent cell. Naturally, if one of the sides of Kl lies on the bound-
ary oX, there is no enlargement in this direction. In the sequel, we will denote by Gint

l the set of control
volumes Kl 2 Gl which are not in the enlargement zone of Gl. Then, let Al ¼ f[Kl; Kl 2 Gint

l ;
Kl � xhl;R or EKl \ ðERÞl 6¼ ;g be the refinement area on each level l; 0 6 l < l�. As a fact, a control volume
lying in the enlargement zone of Gl does not generate a refinement patch nested in Gl, but may induce a
refinement patch connected to a neighbor patch of Gl.

Since all the nested subgrids are simply shaped (rectangular in 2-D), the E.B.C. solver (see Section 2) can be
easily implemented on each patch in a recursive way.
Fig. 4. Generation of the refinement patches. (a) Level l. (b) Patch Gl+1 around Kl.
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4.3.2. A FIC-like solver

For sake of clarity, we suppose now that hlþ1 ¼ hl
2 in each direction. Hence, each patch Gl has 4d cells at

most, i.e. 16 cells in 2-D and 64 cells in 3-D.

4.3.2.1. The prolongation operator P l�1
l . The boundary conditions on Cl ¼ oXl are divided into two subsets:

� On Cl \ C, the B.C. of the original problem are imposed,
� On Cl n ðCl \ CÞ, Dirichlet B.C. are imposed by a prolongation operator P l�1

l .

The E.B.C. method introduced here allows jumps of flux and solution. The prolongation operator P l�1
l is then

an interpolation operator which takes account of the solution jumps. As the FV scheme (see Section 3) enables
uKl�1;rl�1

to be evaluated (see Eq. (13)), a linear interpolation is implemented from the values
ðuKl�1

; uKl�1;rl�1
ÞKl�12Gl�1

.
We use the following linear interpolation formula:
f ðaÞ ¼ f ða� dÞ þ f ðaþ dÞ
2

along the segment ½a� d; aþ d�.
In our case, f ðaÞ represents uKl;rl . The interpolation nodes fa� d; aþ dg depend on the dimension d of the

problem. For 2-D problems, f ða� dÞ and f ðaþ dÞ represent either uKl�1
or uKl�1;rl�1

, while for 3-D problems
f ða� dÞ and f ðaþ dÞ are both side values uKl�1;rl�1

(with different rl�1 2 EKl�1
), see Figs. 5 and 6.

Remark. If hlþ1 6¼ hl
2 , the linear interpolation formula becomes a bilinear interpolation formula where the

interpolation nodes are four of the values uKl�1;rl�1
of the cell Kl�1.
4.3.2.2. The restriction operator Rlþ1
l . The restriction operator Rlþ1

l is based on the FIC restriction operator (see
Eq. (24)). Then, rlðFÞ will take into account the flux residual between the level l and the level lþ 1. With the
E.B.C. method, since the approximate interface Rhl is defined on each level l, a control volume Kl � eXhl in the
approximate original domain can contain control volumes Klþ1 � Xe;hlþ1

in the approximated external domain
(see Fig. 7). As the approximate original domain eXh and the external one Xe;h are uncoupled, the flux residual
has to be evaluated on sides of control volumes in the approximate original domain only.

Moreover, on the sides rl 2 ðERÞl, the immersed boundary conditions are imposed. These sides are then
boundary sides of the approximate original domain eXhl . So, the flux correction residual rlðFÞ is obtained
by the difference between the fluxes FlðuÞ and Flþ1ðuÞ on strictly interior sides of the approximate original
domains only. Hence, at level l, the interior flux will be corrected in the approximate original domain. If
Fig. 5. 2-D case: nodes of interpolation for the prolongation operator P l�1
l .



Fig. 6. 3-D case: nodes of interpolation for the prolongation operator P l�1
l .

Fig. 7. Interior control volume Kl with exterior control volumes Klþ1.
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we denote by ðErefÞl ¼ frl 2 El; rl 2 ðEintÞl n ðERÞl; rl � eXhlg the set of sides at the level l which are strictly

interior to the approximate original domain eXhl , then 8Kl �Al,
rlðFÞðKlÞ ¼
1

measðKlÞ
Rlþ1

l ðFðuÞÞðKlÞ �
X
frl�oKl;

rl2ðEref Þlg

Z
rl

FlðuÞ:nKl;rl

8>><>>:
9>>=>>; ð26Þ
with the restriction operator Rlþ1
l defined by
Rlþ1
l ðFðuÞÞðKlÞ ¼

X
frlþ1�oKl;Klþ1�Kl

rlþ12ðEref Þlþ1

rlþ1�rl2ðEref Þlg

Z
rlþ1

Flþ1ðuÞ:nKlþ1;rlþ1
:

ð27Þ
4.3.2.3. Domain decomposition method (DDM). Due to the patches enlargement (see Section 4.3.1), there is
an overlapping between some patches of the same level. Hence, on each level 0 < l 6 l� (at descent and
ascent phases of the V-cycles), we perform a small number of domain decomposition iterations (typically 3)



1360 I. Ramière et al. / Journal of Computational Physics 225 (2007) 1347–1387
via a standard multiplicative Schwarz procedure (see e.g. [42]) acting as a smoother. Moreover, at the ascent
phase, in order to obtain the same solution on a control volume belonging to different patches, the same
equation has to be solved on this control volume. The right-hand side corresponding to a restricted control
volume Kl �Al;Kl 2 Gint

l , is then imposed as right-hand side of all the equations solved on this control
volume.

For some kind of approximations of the immersed interface (see for example the ‘‘cut’’ interface of the Sec-
tion 5), control volumes Kl �Al belonging to the approximate external domain Xe;hl at the level l, may con-
tain control volumes Klþ1 included in the approximate original domain eXhlþ1

at the level lþ 1. In this case, at
the level lþ 1, the DDM smoothing iterations (Schwarz iterations and right-hand side correction) are really
necessary to have a better approximation of the flux Flþ1ðuÞ on the neighbors patches and then to obtain a
good evaluation of the restriction operator Rlþ1

l .
4.3.2.4. The FIC–EBC algorithm. The multilevel FIC–EBC algorithm writes for V-cycles:

Initialization: Computation of u0
0, the solution to the original problem ðP0

0Þ on the grid G0.
Iterations: Computation of uk

l .

for k ¼ 1 to nbVcycles do

uk
0 ¼ uk�1

0 :
Resolution on the fine grids Gl:
for l ¼ 1 to l� do

(i) Compute B.C. on Cl n ðCl \ CÞ by interpolation of uk
l�1:
uk
l ¼ P l�1

l uk
l�1 on Cl n ðCl \ CÞ

where P l�1
l is the prolongation operator.
(ii) Computation of uk
l by solving ðPk

l Þ with f k
l ¼ f k�1

l .
(iii) DDM iterations (Schwarz iterations).

endfor

Correction on the coarse grids Gl:
for l ¼ l� � 1 to 0 do

(i) Evaluation of the flux residual rk
l ðFÞ defined for 8Kl �Al by
rk
l ðFÞðKlÞ ¼

1

measðKlÞ
Rlþ1

l ðFðukÞÞðKlÞ �
X
frl�oKl;

rl2ðEref Þlg

Z
rl

FlðukÞ:nKl;rl

8>><>>:
9>>=>>;

where Rlþ1
l is the restriction operator.
(ii) Computation of the corrected solution uk
l : resolution of the problem ðPk

l Þ with
f 0
l ¼ f jXl

f k
l ¼ f k�1

l þ
P

Kl�Al

vKl
rk

l ðFÞðKlÞ

8<:

(iii) DDM iterations (Schwarz iterations and correction of the right-hand side in the enlargement zone)

endfor

endfor

In the discrete case, with the notations of Section 3.1, the flux integrals are approximated by the following
quadrature formula, which is in agreement with the FV discretization
8l; 0 6 l 6 l�;
Z

rl

Fk
l ðuÞ:nKl;rl ¼ mðrlÞ Fk

l ðuÞ:nKl;rl

� 	
ðxrlÞ: ð28Þ
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The stopping criterium for the V-cycles is chosen as
kukþ1

0
�uk

0
k

kuk
0
k 6 10�4 in the following numerical results. The

steepest refinement level tested here is l� ¼ 3 (i.e. four levels including the initial coarse level). This leads to
a convergence of the algorithm within about 10 V-cycles.

5. Numerical results

In what follows, we focus on 2-D problems, even though the simulation of 3-D problems is straightforward.

5.1. Solvers

In the computations, if we consider an isotropic diffusion tensor a ¼ aðxÞId, the discretization of a diffusion
problem leads to a symmetric positive definite linear system. A conjugate gradient iterative algorithm [43] is
used to solve the linear system. However, for a convection–diffusion problem discretized with an upstream
scheme for the convective flux, the linear system is no more symmetric. A Bi-GCSTAB [44] algorithm is then
implemented. For all the resulting linear systems, a diagonal preconditioner is used to improve the ill-condi-
tioning due to the penalization coefficients. Looking for a better preconditioning will be an interesting study
for further works. However, the choice of a better precontionner is not so crucial since the multilevel solver
involves for the local patches the resolution of linear systems with a small number of unknowns.

The stopping criterium of the Krylov gradient methods is krkk 6 10�9, where rk is the residual vector at the
kth iteration of the algorithm. Hence, the diagonal preconditioned gradient methods converge within about 10
iterations on the local patches.

5.2. Discrete norms

The errors between the numerical and analytic solutions to the following test problems can be appreciate by

the calculation of either the discrete L2-norm or the L1-norm (max norm) in eXh.
For the approximate solution uh, the discrete L2-norm in the approximate original domain eXh is defined by
kuhk
L2ðeXhÞ

¼
X

K�eXh

measðKÞjuK j2
0B@

1CA
1=2
and for the analytic solution ~u to the original test problems
k~uk
L2ðeXhÞ

¼
X

K�eXh

measðKÞj~uðxKÞj2
0B@

1CA
1=2

:

Then a relative discrete L2-norm of the error is evaluated by
erðuhÞ ¼
k~u� uhk

L2ðeXhÞ

k~uk
L2ðeXhÞ

:

By definition, the discrete L1-norm is
k~u� uhk
L1ðeXhÞ

¼ max
K�eXh

j~uðxKÞ � uK j:
5.3. First test problem: a quarter disk domain

We solve a 2-D boundary value problem either for convection–diffusion or diffusion alone in a quarter of
the unit disk eX with symmetry conditions on the axis eC (see Fig. 8(a)). The fictitious domain is the unit square
X ¼�0; 1½��0; 1½, see Fig. 8(b).



Fig. 8. Immersion of the unit disk into the unit square. (a) Original domain. ~X (b) Fictitious domain X.
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The domain X is meshed by uniform square cells K with a grid step varying from h ¼ 1
4

to h ¼ 1
512

. This
defines the exterior approximate interface Rext

h such that eX � eXh and the cut approximate interface Rcut
h which

may cross the physical immersed interface R, see Fig. 9. The resulting approximate physical domains eXh are
such that: jmeasðeXhÞ �measðeXÞj ¼ OðhÞ, or more precisely, measððeX [ eXhÞ n ðeX \ eXhÞÞ ¼ OðhÞ.

5.3.1. Diffusion problems
5.3.1.1. Dirichlet problem. First, we consider the following homogeneous Dirichlet problem:
Fig. 9.
approx
ð ~PÞ
�M~u ¼ 4 in eX
o~u
on ¼ 0 on eC;
~u ¼ 0 on RðuD ¼ 0Þ;

8><>:

which has the analytic solution
~u ¼ 1� r2 in eX where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
denotes the radius in eX:
The fictitious domain problem is solved in X with the E.B.C. method (D1), using only the surface penalty on
Rh without exterior control, and (D2), using both a surface penalty on Rh and a volume H1 penalty in Xe;h,
described in Table 1 of Section 2 with ue � 0.

In Fig. 10, we observe that the L2-norm of the modelling error varies with respect to the penalization
parameter g better than Oðg1

2Þ for (D1), and Oðg3
4Þ for (D2). These results are in agreement with the H1 esti-

mation of the modelling error in [4]. The stagnation plateau shown in this figure corresponds to the value
Non-conforming mesh, approximate interfaces Rh and approximate domains eXh. (a) Exterior approximate interface Rext
h , (b) Cut

imate interface Rext
h .
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of the space discretization error. The following computations are performed with g ¼ 10�12 to get the model-
ling error negligible compared to the discretization error.

Fig. 11 shows the convergence of the numerical error with respect to the discretization step h. Both E.B.C.
methods (D1) and (D2) exhibit a first-order convergence for the L2-norm, as expected since
jmeasðeXhÞ �measðeXÞj ¼ OðhÞ only. We can also observe that for a given discretization Rh (either exterior
or cut) of the immersed interface R, the two variants (D1) and (D2) lead to the same errors. Indeed, perform-
ing a H1 penalty method in Xe;h, the solution and its gradient are penalized. So ug ’ uD on the exterior domain
Xe;h until the approximated interface Rh. As no solution jump on Rh is also imposed by penalization, the (D2)
method leads to ug ’ uD on Rh as for the surface penalty method (D1).

Moreover, the methods which use the cut approximate interface are more accurate since Rcut
h approximates

R more precisely than Rext
h .

In Fig. 12(a), the error distribution j~uðxKÞ � uK j 8K � eXh, illustrates that the main differences between the
approximate solution and the analytic one are located on the grid cells crossed by the immersed interface.

Then the (D1) E.B.C. method is combined with the FIC–EBC solver (see Section 4.3), the refinement zone
of which is located around the immersed interface. The two-grid algorithm converges within about 10 V-
cycles. The number of V-cycles for the convergence almost does not increase with the number of refinement
levels. The first conclusion to draw from Fig. 12(b), is that the error values are reduced when the FIC–EBC
solver is applied. We can also remark some error spikes. These spikes are localized around the immersed inter-
face, on the cells K � xh;R ¼ f[K;K 2Th;K \ R 6¼ ;g. Indeed, on these cells, the embedded Dirichlet bound-
ary condition is still imposed on the sides r � Rh, while the interior fluxes on r � eXh and hence the interior
solution are corrected by the FIC–EBC solver. For each cell K � xh;R, the most important is the distance
between the approximate immersed interface Rh and the original interface R (see Fig. 9), the most important
is the error.

The L2 error norms obtained for several levels of refinement are reported in Fig. 13.
As shown in Fig. 13 the combination of the E.B.C. method with the FIC–EBC solver conserves the first-

order accuracy for the L2-norm. Moreover, the error on the original coarse grid is similar to the error obtained
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Fig. 11. Convergence for the L2-norm of the discretization error with h for the Dirichlet diffusion problem with Rext
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without refinement on a mesh with a discretization step equal to the local finest grid’s discretization step. The
numerical results enable us to conclude that for the L2-norm, the accuracy of the method varies like Oðhl� Þ
where hl� is the mesh step of the finest local refinement grid (last level of refinement). However, since the error
of the whole coarse mesh depends also on the error of the non-refined zone, the method varies like Oðhl� Þ for l�

less than a maximum number of refinement levels (see details in Section 5.5).



Fig. 12. Error distribution with a 16 · 16 mesh for the (D1) E.B.C. method with Rext
h before and after the combination with the FIC–EBC

solver (with DDM iterations)—Dirichlet diffusion problem. (a) Without refinement (l* = 0), max
K�~Xh

j~uðxKÞj ¼ 7:9 10�2. (b) With refinement:
(l* = 3), max

K�~Xh

j~uðxKÞj ¼ 1:1 10�2.
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This multi-grid technique is low cost since each level of refinement contains a small number of degrees of
freedom. Table 2 and Fig. 14 show that in term of CPU (central processing unit), the combination of the
(D1) E.B.C. method with the FIC–EBC solver becomes interesting from a relative error lower than 5.10�2.
For example, the CPU time is divided by 2 between the error obtained with h0 ¼ 1

512
and l� ¼ 0 (without

refinement-1 level) and the same error obtained with h0 ¼ 1
128

and l� ¼ 2 (3 levels). Moreover, for a given
error, the memory storage required is always smaller with the FIC–EBC solver.

As we explained in Section 4.3.2.3, the DDM iterations are necessary to recover the good solution with a
cut interface approximation Rcut

h of R. On the other hand, for the exterior interface Rext
h , at each level lþ 1, all

the control volumes Klþ1 2 Gint
lþ1;Klþ1 � eXhlþ1

have their parent cell Kl � eXhl . Fig. 15(a) shows that, even with-
out DDM iterations, the convergence of the E.B.C. method combined with the FIC–EBC solver remains in
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Fig. 13. Convergence for the L2-norm of the discretization error with h0 for the combination of the (D1) E.B.C. method with the FIC–
EBC solver for the Dirichlet diffusion problem. (a) Exterior interface Rext

h . (b) Cut interface Rcut
h .
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Oðhl� Þ for Rext
h . In this case the CPU time is reduced (see Table 3 and Fig. 15(b)). Indeed, to obtain the error of

h0 ¼ 1
512

and l� ¼ 0 using the FIC–EBC solver with h0 ¼ 1
128

and l� ¼ 2, the CPU time is divided by a factor 9.
Since the method with the exterior interface Rext

h does not require DDM iterations, the ratio of the precision
of the solution over the CPU time is better for this method than for the method with a cut interface Rcut

h . To
avoid the DDM smoothing iterations for the cut interface approach, some patches (of the same level of refine-
ment) have to be gathered.



Table 2
CPU time (in seconds) with respect to h0 and l� for the (D1) E.B.C. method combined with the FIC–EBC solver for the Dirichlet diffusion
problem

l* h0

1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exterior interface Rext
h

0 1.95 · 10�3 1.95 · 10�3 3.90 · 10�3 3.32 · 10�2 2.38 · 10�1 6.26 · 100 6.02 · 101 4.87 · 102

1 1.79 · 10�1 3.90 · 10�1 1.03 · 100 3.05 · 100 1.16 · 101 8.88 · 101 4.78 · 102

2 9.41 · 10�1 2.31 · 100 5.99 · 100 1.80 · 101 5.98 · 101 2.44 · 102

3 3.35 · 100 8.44 · 100 2.41 · 101 7.35 · 101 2.24 · 102

Cut interface Rcut
h

0 1.95 · 10�3 1.95 · 10�3 5.86 · 10�3 3.12 · 10�2 2.34 · 10�1 5.76 · 100 5.53 · 101 4.97 · 102

1 1.42 · 10�1 3.55 · 10�1 8.73 · 10�1 2.76 · 100 1.01 · 101 7.46 · 101 4.17 · 102

2 7.90 · 10�1 1.99 · 100 5.20 · 100 1.52 · 101 4.62 · 101 1.96 · 102

3 2.86 · 100 7.28 · 100 1.96 · 101 5.89 · 101 1.84 · 102
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In order to validate the (D1) E.B.C. method for any Dirichlet boundary conditions, we now study a non-
homogeneous Dirichlet problem
ð ~PÞ
�M~u ¼ �ð2þ 4x2Þ expðx2Þ in eX;
o~u
on ¼ 0 on eC;
~u ¼ uD ¼ 3þ expðcos2 hÞ on R ðwhere h ¼ arctanðyxÞÞ;

8>><>>:

which has the analytic solution
~u ¼ 3þ expðx2Þ in eX:

The fictitious problem over X is solved using the (D1) E.B.C. method. As Fig. 16(a) shows, the first-order

accuracy is reached for the L2-norm for both approximate immersed interfaces. Since the method involving
the cut interface is more accurate, the FIC–EBC solver is combined with the (D1) E.B.C. method for the
cut interface. The results reported in Fig. 16(b) exhibit a first-order convergence of the method with respect
to the finest local grid’s discretization step hl� . This confirms that the (D1) E.B.C. method enables to take
account for any Dirichlet embedded boundary condition and that the combination with the multilevel algo-
rithm leads to an Oðhl� Þ asymptotic convergence for the L2-norm.

5.3.1.2. Robin problem. We now consider the Robin problem
ð ~PÞ

�M~u ¼ 16r2 in eX;
o~u
on ¼ 0 on eC;
� o~u

on ¼ uþ 3 on RðaR ¼ 1; gR ¼ 3Þ;

8>><>>:

which has the analytic solution
~u ¼ 2� r4 in eX with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

The fictitious domain problem is solved in X with the E.B.C. method (R) without exterior control, as
described in Table 1. We investigate in Fig. 17(a) the effect of the global correction for the approximate inter-
face proposed in Section 3.3 where �h is computed by Eq. (22) in each finite volume crossed by R. An asymp-
totic stagnation of the error can be observed and the first-order precision is lost. For a local correction �K, if a
local formula (see Eq. (17)) is applied without taking into account the control volumes K � xh;R with bEK ¼ ;,
there is no error convergence (see Fig. 17(b)).

When the accurate local correction �K (see Eq. (20)) taking account of all the local measures of Rl;K for
K � xh;R is computed, the first-order accuracy is then yielded for the L2-norm error, see Fig. 18. Here again,
the approximate interface Rcut

h gives a better precision than the approximate interface Rext
h .
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The (R) E.B.C. with the accurate local correction is then combined with the FIC–EBC solver. The results
reported in Fig. 19 show a L2-norm asymptotic accuracy of the method in Oðhl� Þ, hl� being the discretization
step of the finest local grid.

As we can observe in Table 4 and Fig. 20, the combination of the E.B.C. method with the FIC–EBC solver
improves the ratio of the obtained precision over the CPU time from a relative precision of 10�1. This
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improvement is better than for the Dirichlet case: the CPU ratio is around 15 between the error obtained with
h0 ¼ 1

512
and l� ¼ 0 and the same error obtained with h0 ¼ 1

128
and l� ¼ 2.

As in the Dirichlet case, Fig. 21(a) enables us to conclude that DDM iterations are not required for the
exterior interface Rext

h . The relative CPU time is more improved (see Table 5 and Fig. 21(b)). The CPU time
ratio reaches 25 between the same error obtained either with h0 ¼ 1

512
and l� ¼ 0 or with h0 ¼ 1

128
and l� ¼ 2.



Table 3
CPU time (in seconds) with respect to h0 and l� for the (D1) E.B.C. method combined with the FIC–EBC solver without DDM iterations
for the Dirichlet diffusion problem with Rext

h

h0 l*

1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exterior interface Rext
h (FIC–EBC solver without DDM)

0 1.95 · 10�3 1.95 · 10�3 3.90 · 10�3 3.32 · 10�2 2.38 · 10�1 6.26 · 100 6.02 · 101 4.87 · 102

1 2.73 · 10�2 5.08 · 10�2 1.39 · 10�1 5.29 · 10�1 3.09 · 100 4.46 · 101 2.83 · 102

2 9.77 · 10�2 2.15 · 10�1 5.12 · 10�1 1.49 · 100 5.85 · 100 5.43 · 101

3 2.77 · 10�1 6.62 · 10�1 8.87 · 10�1 3.68 · 100 9.46 · 100
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However, even looking at the results in term of CPU time, the method with the cut interface Rcut
h and DDM

iterations is the most accurate in the Robin case.

Remark. The convergence results for the L1-norm are similar to those presented for the L2-norm (see the
curves plotted for convection–diffusion problems in the next section):
k~u� uhk
L1ðeXhÞ

¼ Oðhl� Þ
and k~u� uhk
L1ðeXhÞ

¼ Oðh0Þ when the residual stagnation error is reached.

5.3.2. Convection–diffusion problems

5.3.2.1. Dirichlet problem. The convection–diffusion Dirichlet problem is considered as follows:
�M~uþ divð~v~uÞ ¼ 4 in eX;
o~u
on ¼ 0 on eC;
~u ¼ uD ¼ 0 on R;

8>><>>:

with ~v ¼ r

2
er where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and er is the radial unit vector.

The analytic solution of this problem is
~u ¼ 4 1� exp
r2 � 1

4

� �� �
in eX:
The associated fictitious problem ðPÞ is solved using either the (D1) or (D2) E.B.C method (see Table 1). The
following results have been performed with g ¼ 10�12 to obtain a negligible modelling error compared to the
discretization error. As in the diffusion case, the two Dirichlet E.B.C. methods are both first-order methods for
the L2-norm and lead to the same errors (see Fig. 22).

An adaptive mesh refinement is performed around the immersed interface for the (D1) E.B.C. method.
As shown in Fig. 23, the (D1) E.B.C. method combined with the FIC–EBC algorithm is a first-order
method for the L2-norm. However for the cut interface with 4 levels (l� ¼ 3), a stagnation appears: the error
due to the non-refined zone of the original domain is reached. Hence, the combination of the E.B.C.
method and the FIC–EBC solver varies like Oðhl� Þ until the discretization error of the non-refined zone
is obtained.

If we look towards the error obtained for the L1-norm, we can see in Fig. 24 that the behaviour of the max
norm error is similar to the behaviour of the L2-norm error. The E.B.C. method is of first order for the L1-
norm, and the combination of the (D1) E.B.C. method with the FIC–EBC solver remains of first order with
respect to the finest local grid discretization step.

Moreover, the discretization of the convective flux makes the DDM iterations necessary even for the exte-
rior interface Rext

h . The upstream scheme may require the unknown value of the neighbor control volume. If
this control volume belongs to the enlargement zone of a patch and also belongs to the refinement zone of
another patch, the values of the convective flux can then be really different. This may cause large differences
on the next coarser grids.
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5.3.2.2. Robin problem. We now consider the Robin problem
�M~uþ divð~v~uÞ ¼ 16r2 in eX;
o~u
on ¼ 0 on eC;
� o~u

on ¼ ~uþ 3 on RðaR ¼ 1; gR ¼ 3Þ;

8>>><>>>:

with ~v ¼ 2r3er where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and er is the radial unit vector.

The analytic solution of this problem is
~u ¼ 2� 5

3
exp

r4 � 1

2

� �
in eX:
Since jmeasðeXhÞ �measðeXÞj ¼ OðhÞ, the expected accuracy is of first order for the L2-norm. In Fig. 25, the
convergence of the (R) E.B.C. method (see Table 1) for two kinds of surface correction is compared. A global
approximation of the characteristic parameter �h (see Eq. (22)) leads to an asymptotic stagnation of the error
and then the first-order precision is lost. With an accurate local correction (see Eq. (20)), the asymptotically
first-order accuracy is then yielded for the L2-norm error. Compared to diffusion problems, the asymptotic
stagnation of the variant involving a global �h appears earlier, from the 8 · 8 mesh for the cut interface
Rcut

h . For Robin (or non-homogeneous Neumann) problems, a local correction is thus required to keep the
first-order method.

A multi-level algorithm with local nested patches around the immersed interface is performed with the
method involving a local surface correction. As in the Dirichlet case, the FIC–EBC solver reduces the original
coarse error until the stagnation due to the global error in the non-refined zone (see Fig. 26). Then, the com-
bination of the E.B.C. method with the FIC–EBC solver leads to a convergence for the L2-norm in Oðhl� Þ as
long as the most important error remains around the immersed boundary.

The max norm convergence of the error obtained with the combination of (R) E.B.C. method and the FIC–
EBC solver is also of first order, see Fig. 27. For the cut approximate interface, the same stagnation as for the
L2-norm appears. The max norm error is then controlled be the max norm error of the non-refined zone.
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5.4. Second test problem: a corner domain

We now consider an original polygonal domain eX immersed in the unit square X ¼�0; 1½��0; 1½. That defines
a corner immersed interface R ¼ R1 [ R2, see Fig. 28(a). As in the quarter disk case (see Section 5.3), the fic-
titious square domain is meshed with a grid step varying from h ¼ 1

4
to h ¼ 1

512
. The approximate immersed

interface Rh, lying on sides of the mesh, is chosen such that it crosses the physical immersed interface R,
see Fig. 28(b). Then, the approximate physical domain verifies measððeX [ eXhÞ n ðeX \ eXhÞÞ ¼ OðhÞ.



Table 4
CPU time (in seconds) with respect to h0 and l� for the (R) E.B.C. method combined with the FIC–EBC solver for the Robin diffusion
problem

h0 l*

1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exterior interface Rext
h

0 3.90 · 10�3 3.90 · 10�3 5.86 · 10�3 3.71 · 10�2 2.81 · 10�1 7.43 · 100 8.04 · 101 5.89 · 102

1 4.29 · 10�2 9.77 · 10�2 2.13 · 10�1 6.76 · 10�1 2.33 · 100 2.17 · 101 1.77 · 102

2 2.22 · 10�1 4.92 · 10�1 9.04 · 10�1 3.44 · 100 9.84 · 100 5.17 · 101

3 7.66 · 10�1 1.55 · 100 3.05 · 100 1.19 · 101 4.01 · 101

Cut interface Rcut
h

0 1.95 · 10�3 1.95 · 10�3 5.86 · 10�3 3.71 · 10�2 2.89 · 10�1 7.22 · 100 7.72 · 101 6.18 · 102

1 3.90 · 10�2 9.77 · 10�2 2.07 · 10�1 6.44 · 10�1 2.17 · 100 2.20 · 101 1.83 · 102

2 2.13 · 10�1 4.04 · 10�1 8.77 · 10�1 2.84 · 100 9.67 · 100 4.08 · 101

3 6.56 · 10�1 1.50 · 100 3.75 · 100 9.86 · 100 4.01 · 101
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We want to solve the mixed problem
ð ~PÞ

�M~u ¼ 4 in eX;
o~u
on ¼ 0 on eC;
~ujR1
¼ � 4

3 x2 þ 2ffiffiffi
3
p xþ 1 on R1 uD ¼ � 4

3 x2 þ 2ffiffiffi
3
p xþ 1

� �
;

� o~u
on jR2

¼ ~ujR2
þ 4x2 � 6xþ 1þ

ffiffiffi
3
p

on R2ðaR ¼ 1; gR ¼ 4x2 � 6xþ 1þ
ffiffiffi
3
p
Þ:

8>>>>>>><>>>>>>>:

with the analytic solution ~u ¼ 2� ðx2 þ y2Þ in eX.

This mixed problem is solved over the square domain X with the E.B.C. method (D1) on R1;h and the
E.B.C. method (R) on R2;h with a local correction parameter �K. We combine these E.B.C. methods with
the FIC–EBC solver in order to improve the accuracy of the solution around the immersed interface. The
results are reported in Fig. 29.

This test case enables us to conclude that even when the shape of the immersed interface is more singular
(with corners for example), the E.B.C. method is in OðhÞ for the L2-norm. Then, the combination with the
FIC–EBC solver leads to a convergence in Oðhl� Þ, with l� the finest grid level, until the error of the non-
refined zone is reached. Moreover, these results confirm that the fictitious domain method presented in this
article can be used without difficulty for mixed boundary conditions. Indeed, for each general boundary
condition, the same generic formulation with appropriate coefficients is used to evaluate the numerical
fluxes.

5.5. Analysis and comments on the numerical results

In all the previous examples, the space discretization error is numerically measured by several manners. The
L2-norms (e.g. Fig. 19) or L1-norms (e.g. Fig. 24) of the error inside the approximate original domain eXh are
plotted with respect to the discretization step h0 of the global coarse mesh. Typical distributions inside eXh of
the absolute error calculated with or without local refinement are represented in Fig. 12. These numerical
results enable us to draw the following conclusions for diffusion or convection–diffusion problems with Dirich-
let, Robin or mixed embedded boundary conditions:

� for the L2-norm and the L1-norm, the mesh convergence of the E.B.C. methods asymptotically varies like
Oðh0Þ, where h0 denotes the global mesh step.
� when the multilevel FIC–EBC solver is used, the mesh convergence becomes in Oðhl� Þ where hl� denotes

the discretization step of the local finest grid (last level of refinement). Indeed, the slope of all the plotted
curves (in log-log representation) is nearly one: the accuracy still varies as Oðh0Þ. Moreover, the error
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obtained with l� refinement levels from a given global mesh step h0 is reduced to the error obtained
without refinement (monogrid calculation) with a global mesh step equal to hl� . However the Oðhl� Þ con-
vergence holds until a maximum number of refinement levels is reached, over which no more improve-
ment of the discretization error is observed (see Figs. 23 and 26). Then, only the Oðh0Þ convergence
remains.
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� the stagnation of the error, which can be observed when the number of refinement levels increases, is due to
the residual discretization error in the non-refined zone of the global mesh. This residual error is also of first
order. Indeed, as we solve elliptic problems, the influence of the boundary conditions is visible on the whole
domain and consequently remains non-negligible far away from the boundary. The error distribution inside
the approximate original domain confirms this conclusion, see Fig. 12. Thus, the discretization error of non-
refined zone (which does not contain the immersed boundary) is always spoiled by the poor discretization



Table 5
CPU time (in seconds) with respect to h0 and l* for the (R) E.B.C. method combined with the FIC–EBC solver without DDM iterations for
the Robin diffusion problem with Rext

h

h0 l*

1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exterior interface Rext
h (FIC–EBC solver without DDM)

0 3.90 · 10�3 3.90 · 10�3 5.86 · 10�3 3.71 · 10�2 2.81 · 10�1 7.43 · 100 8.04 · 101 5.89 · 102

1 7.81 · 10�3 2.34 · 10�2 5.27 · 10�2 2.32 · 10�1 1.40 · 100 2.11 · 101 1.73 · 102

2 3.71 · 10�2 7.42 · 10�2 1.72 · 10�1 5.25 · 10�1 1.91 · 100 2.40 · 101

3 9.57 · 10�2 1.62 · 10�1 5.21 · 10�1 1.17 · 100 3.60 · 100
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of the immersed interface by stair cases, even with a local mesh refinement around this immersed boundary.
Whatever the number of refinement levels l� is, the residual error converges like Oðh0Þ and never like Oðh2

0Þ,
which is clearly observed in the mesh convergence results.

These previous remarks suggest that the discretization error in the approximate original domain eXh converges
for the L2-norm and by the same way for the L1-norm with the following law
erðuhÞ ’ c0h0 þ Cl�hl� ; 0 < c0 < C0 < C1 < � � � < Cl� ; hl� ¼
h0

2l�
; ð29Þ
where the constants c0;Cl; 0 6 l 6 l� do not depend on the discretization steps. Thus, the term c0h0 is the
residual stagnation error in the non-refined zone.

This numerical estimation summarizes the previous conclusions:

� Without refinement (l� ¼ 0), the first-order accuracy with respect to h0 is obtained
erðuhÞ ’ ðc0 þ C0Þh0:
� While l� is sufficiently small in order to have
c0h0 
 Cl�hl� ;

the mesh convergence varies like Oðhl� Þ.
� As soon as the number of refinement levels l� is bigger than a ‘‘stagnation’’ number of refinement levels l�stag,

the residual stagnation error is reached. So we have
Cl�hl� 
 c0h0; l� P l�stag;

where

Cl�stag
hl�stag
’ mc0h0; m
 1:

Then, for l� bigger than l�stag ¼
ln

Cl�
stag
mc0

� �
ln 2

, which is a bounded number of refinement levels independent of h0, the
global error erðuhÞ is equal to the residual error c0h0. The correction of the solution around the immersed inter-
face is then negligible compared to the residual error of the non-refined part.

The figures of the discretization error versus the CPU time (Figs. 14 and 20) and corresponding tables with
respect to h0 and l� (Tables 2 and 4) show the performances of the multilevel solver.

In view of all the previous comments, the optimal strategy to obtain a given error is first to increase the
number of refinement levels l� before to decrease h0 if the residual stagnation error is reached.

The resolution of 3-D problems with the previous E.B.C. methods combined with the FIC–EBC solver
should follow the same strategy. In particular, the mesh convergence will be of first order: Oðhl� Þ or Oðh0Þ
as in 2-D. There still exists a maximum number of refinement levels independent of h0 over which no improve-
ment of the solution is observed. However, we may expect that the multilevel solver would be relatively less
efficient than in 2-D. In this case, the improvement of the ratio between the solution precision and the CPU
time will be surely a little bit less important.
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6. Conclusion and perspectives

An accurate fictitious domain approach to solve elliptic problems with general boundary conditions has
been introduced. This method is based on the introduction of embedded transmission conditions linking
jumps of flux and solution through the immersed interface. This method is low cost since a unique Cartesian
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mesh of the fictitious domain is required. As this method yields a first-order convergence for the L2 and
L1-error norm, an adaptive refinement algorithm is implemented to improve the accuracy of the solution.
This algorithm takes account of the properties of the fictitious domain method introduced here and then
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an asymptotic convergence in Oðhl� Þ, hl� being the discretization step of the finest local grid, can be observed
until the discretization error of the non-refined zone is reached. The numerical results obtained for Dirichlet,
Robin or mixed problems are very satisfactory.

Such a fictitious domain method is full of promise, especially to simulate moving and deformable bound-
aries with a cheap computational cost since no boundary-fitted remeshing is required. Only the local patches
of refinement have to be adjusted around the moving immersed boundary. The generalization of this embed-
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ded boundary conditions method to the corresponding parabolic evolution problems is also straightforward.
The next step will consist in extending this fictitious domain method to the resolution of Navier-Stokes equa-
tions (with a projection step for example) with moving boundaries problems like two phase flow simulations or
fluid/structure interactions (see [45]).
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Math. 81 (4) (1999) 497–520.
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